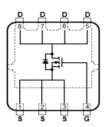


Preliminary Datasheet

N Channel 30V (DS) MOSFET

FEATURES


- Advance Trench Process Technology
- High Density Cell Design for Ultra Low Onresistance

PRODUCTY SUMMARY						
V _{DS}	R	$_{DS(on)} m(\Omega)$	I _D (A)			
20	3	@V _{GS} =4.5V	20			
	4.2	@V _{GS} =2.5V	20			

Application

- ●Portable Devices
- ■Consumer Electronics

DFN3333

Mechanical

●Case: DFN3333 Package

Packing Information

Package	Packing		
DFN3333	5Kpcs/13"Reel		

Maximum Ratings (T _A =25°C unless otherwise specified)						
Parameter	Symbol	Limit	Unit			
DrainSource Voltage	V _{DS}	20	V			
GateSource Voltage	V _{GS}	±12	V			
Continuous Drain Current 1)	I _D	20	Α			
Maximum Power Dissipation	P _D	5	W			
Pulsed Drain Current 2)	I _{DM}	80	Α			
Operating Junction and Storage Temperature Range	T _J , T _{STG}	55~150	°C			

Typical Thermal Resistance						
Parameter	Symbol	Limit	Unit			
JunctiontoAmbient Thermal Resistance 3)		65	°C/W			

Note:

- 1. Fused current that based on wire numbers and diameter
- 2. Repetitive Rating: Pulse width limited by the maximum junction temperature
- 3. 1in2 2oz Cu PCB board

Characteristics Symb	ool	Test Condition		Limits		
Characteristics Symb	100	lest Condition				11!4
<u>.</u>			Min	Тур	Max	Unit
		Static				
DrainSource Breakdown Voltage B _{VDS}	SS	V _{GS} = 0V, I _D =250uA	20	-	-	V
Gate Threshold Voltage V _{GS(t}	th)	V _{DS} =V _{GS} , I _D =250uA	0.40	0.69	1.00	V
Dunin Courses On Ctata Danietona		V _{GS} =4.5V, I _D =20A	-	2.7	3.2	mΩ
DrainSource OnState Resistance R _{DS(o}	on)	V _{GS} =2.5V, I _D =20A	-	3.6	4.2	mΩ
Zero Gate Voltage Drain Current I _{DSS}	3	VDS=20V, VGS=0V	-	-	1	uA
GateSource Leakage Current I _{GSS}	3	$V_{GS}=\pm 12V, V_{DS}=0V$	-	-	±100	nA
		Dynamic 3)				
Total Gate Charge Q _g		V _{DS} =4.5V,V _{GS} =0V,I _D =2	-	62	-	nC
GateSource Charge Q _{gs}	,		-	4	-	nC
GateDrain Charge Q _{gd}	i	<i>5,</i> t	-	21	-	nC
Input Capacitance C _{iss}			-	4000	-	pF
Output Capacitance Coss	s	V_{DS} =10V, V_{GS} =0V,f=1M H_z	-	780	-	pF
Reverse Transfer Capacitance C _{rss}	3	112	-	625	-	pF
		-			· · · · · · · · · · · · · · · · · · ·	
		Switching				
TurnOn Delay Time t _{d(on)})		-	12	-	ns
TurnOn Rise Time t _r	,	V _{DS} =10V,V _{GS} =5V,Rg=3	-	20	-	ns
TurnOff Delay Time t _{d(off)}		.3Ω,I _D =1A	-	100	-	ns
TurnOff Fall Time t _f			-	80	-	ns
,					I	
	Dra	inSource Diode				
Maximum Continuous Body Diode Forward Current		$V_G = V_D = 0V$, Force Current	-	-	1.2	А
Diode Forward Voltage V _{SD})	IS=1.0A, VGS=0V	-	-	1.5	V

NOTES:

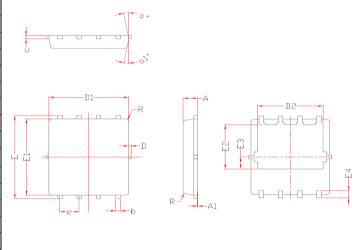
NOTES:

1. Pulse width<300us, Duty cycle<2%.

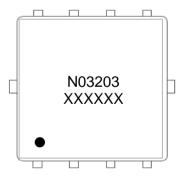
2. Essentially independent of operating temperature typical characteristics.

3. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C.

4. The maximum current rating is package limited.


5. RQJA is the sum of the junctiontocase and casetoambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. Mounted on a 1 inch2 with 2oz.square pad of copper.

6. Guaranteed by design. not subject to production testing.



Package Outline Dimensions (inches and millimeters)

	Dimensions				
SYMBOL	Millim	neters	Inches		
	Min	Max	Min	Max	
Α	0.78	0.82	0.031	0.032	
A1	0.00	0.05	0.000	0.002	
b	0.30	0.35	0.012	0.014	
С	0.1	15	0.006		
D	0.00	0.05	0.000	0.002	
D1	2.98	3.03	0.117	0.119	
D2	2.3	35	0.093		
Е	3.20	3.25	0.126	0.128	
E1	2.98	3.03	0.117	0.119	
E2	1.75 0.069		69		
E3	0.58		0.023		
E4	0.350	0.45	0.014	0	
R	0.2	20	0.008		
е	0.65BSC				
a°	3°				
a1°	10°				

Marking Information

First line:

AAAAAA = Product number

Second line:

XXXXXX = Tracking number

Third line:Gate Pin Point

Motive reserves the right to make changes without further notice to any products herein. Motive makes no warranty representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motive assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Motive data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motive does not convey any license under its patent rights nor the rights of others. Motive products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motive product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motive products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motive and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims costs a damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motive was negligent regarding the design or manufacture of the part.