

MSP3407

V1.1 Datasheet

D

P-Channel 30-V (D-S) MOSFET

SOT-23

G

D

S

FEATURES

- Advance Trench Process Technology
- High Density Cell Design for Ultra Low On-resistance

PRODUCTY SUMMARY					
V_{DS}	$R_{DS(on)} m(\Omega)$		I _D (A)		
-30	65	@V _{GS} =-10.0V	-2.4		
-30	90	@V _{GS} =-4.5V	-2.2		

G

Application

- Portable Devices
- Consumer Electronics

Mechanical

●Case: SOT-23 Package

Packing Information

Package	Packing
SOT-23	3Kpcs / 7" Reel

Maximum Ratings (T _A =25°C unless otherwise specified)				
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-30	V	
Gate-Source Voltage	V _{GS}	±20	V	
Continuous Drain Current ¹⁾	Ι _D	-2.1	А	
Maximum Power Dissipation	PD	0.35	W	
Pulsed Drain Current ²⁾	I _{DM}	-8.4	А	
Operating Junction and Storage Temperature Range	T_J,T_STG	-55 to 150	°C	

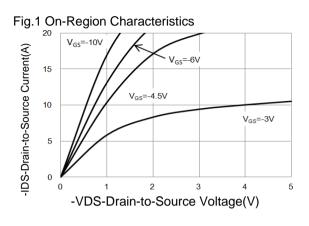
Typical Thermal Resistance			
Parameter	Symbol	Limit	Unit
Junction-to-Ambient Thermal Resistance	$R_{ extsf{ heta}JA}$	100	°C/W

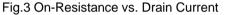
Note:

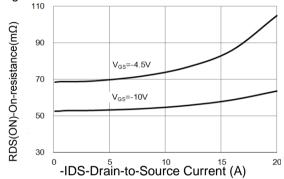
R0JA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins mounted on a 1 inch FR-4 with 2oz. square pad of copper

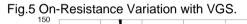
Electrical Ch	aracteristi	CS (T _A = 25° C UNLESS OTH	ERWISE	NOTED)		
Characteristics	Cump al	Test Canditian	Limits			l lucit
Characteristics	Symbol	Test Condition	Min	Тур	Max	Unit
		Static				
Drain-Source Breakdown Voltage	B _{VDSS}	$V_{GS} = 0V, I_{D} = -250uA$	-30	-	-	V
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250$ uA	-1	-1.36	-2.1	V
Droin Source On State Desistance	D	V _{GS} =-10.0V, I _D =-2.4A	-	52	65	mΩ
Drain-Source On-State Resistance	$R_{DS(on)}$	V _{GS} =-4.5V, I _D =-2.2A	-	66	90	mΩ
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-30V, V _{GS} =0V	-	-	-1	uA
Gate-Source Leakage Current	I _{GSS}	V_{GS} =±20V, V_{DS} =0V			±100	nA
		-		·		
		Dynamic ³⁾				
Total Gate Charge	Q_g		-	12	-	nC
Gate-Source Charge	Q_{gs}	V _{DS} =-10V, I _D =-3.1A, V _{GS} =-4.5V	-	1.7	-	nC
Gate-Drain Charge	Q_gd	. vgs- 1.0v	-	2.3	-	nC
Input Capacitance	C _{iss}		-	528	-	pF
Output Capacitance	C _{oss}	V _{DS} =-10V, V _{GS} =0V, f=1.0MHZ	-	63	-	pF
Reverse Transfer Capacitance	C _{rss}		-	48	-	pF
				•		
		Switching				
Turn-On Delay Time	t _{d(on)}		I	5	-	ns
Turn-On Rise Time	t _r	V _{DD} =-10V, I _D =-3.1A,	-	33	-	ns
Turn-Off Delay Time	t _{d(off)}	V _{GS} =-4.5V,RG=6 Ω	-	27	-	ns
Turn-Off Fall Time	t _f		-	10	-	ns
	Dra	ain-Source Diode				
Maximum Continuous Body Diode Forward Current	I _S	-	-	-	-1.2	А
Diode Forward Voltage	V_{SD}	I _S =-1.0A, V _{GS} =0V	-	-	-1.5	V

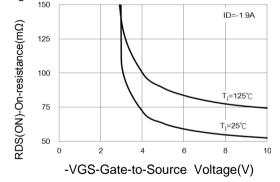
Note:

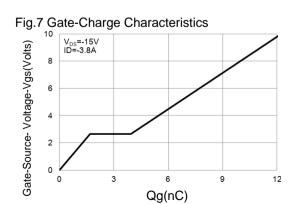

1. Pulse width<300us, Duty cycle<2%


2. Fused current that based on wire numbers and diameter


3. Guaranteed by design, not subject to production testing.




TYPICAL CHARACTERISTIC CURVES



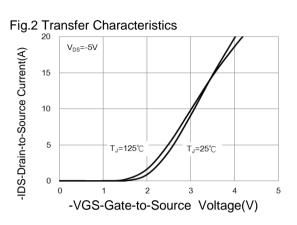


Fig.4 On-Resistance vs.Junction temperature

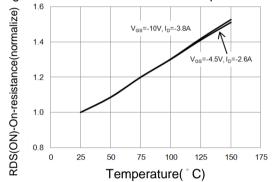
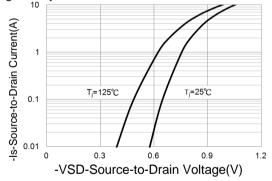
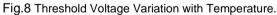
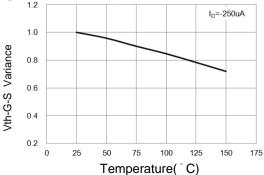
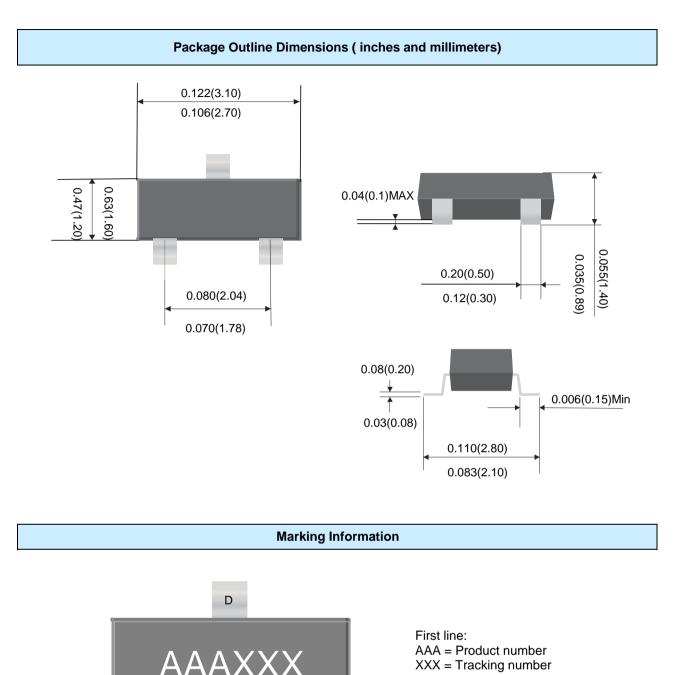





Fig.6 Body Diode Characteristics



G

Motive reserves the right to make changes without further notice to any products herein. Motive makes no warranty > representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motive assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Motive data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motive does not convey any license under its patent rights nor the rights of others. Motive products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motive product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motive products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motive and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims < costs < damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motive was negligent regarding the design or manufacture of the part.

S

Second line:Gate Pin Point

MSP3407