

V1.11 Datasheet

N-Channel 40V MOSFET

FEATURES

- Advance Trench Process Technology
- ●High Density Cell Design for Ultra Low On-resistance

PRODUCTY SUMMARY						
$V_{DS}(V)$ $I_{D}(A)$ $R_{DS(on)}m(\Omega)$ Max						
40	600	1.1	@V _{GS} =10V			
40	000	1.5	@V _{GS} =4.5V			


Application

- ●DC/DC converters
- Battery Protection
- ●Consumer Electronics

Mechanical

●Case:TOLL Package

TOLL

Packing Information

Package	Packing
TOLL	2000EA/13" Reel

Maximum Ratings (T _A =25°C unless otherwise specified)								
Parameter Symbol Limit								
Drain-Source Voltage	V _{DS}	40	V					
Gate-Source Voltage	V _{GS}	±20	V					
Drain Current, V _{GS} @10V (Silicon Limited) 1)3)	I _D	600	А					
Drain Current, V _{GS} @10V (Wire Bond Limited) 1)3)	I _D	400	А					
Peak Drain Current, Pulsed 1)2)3)	I _{DM}	640	А					
Maximum Power Dissipation 1)	P _{tot}	500	W					
Operating Junction and Storage Temperature Range	T_J, T_STG	-55 to 175	°C					

Typical Thermal Resistance							
Parameter Symbol Limit Unit							
Junction-to-Ambient Thermal Resistance 1)	$R_{\theta JA}$	42	°C/W				
Junction-to-Ambient Thermal Resistance 1)	$R_{\theta JC}$	0.25	°C/W				

Note:

- 1. Surface Mounted on a 1 in2 pad area, t≦10sec
- 2. Pulse width≦300us, Duty cycle≦2%.
- Limited by bonding wire
 Essentially independent of operating temperature typical characteristics.
- 5. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.
- 6. The maximum current rating is package limited.
- Guaranteed by design, not subject to production testing.

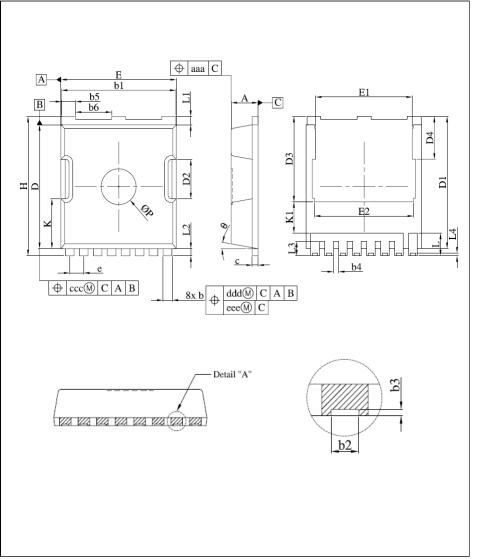
Electrical Characteristics (T _A = 25°C UNLESS OTHERWISE NOTED)						
Characteristics	Symbol	Test Condition		Limits		
	Syllibol	rest Condition	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	B_{VDSS}	V_{GS} =0V, I_D =250uA	40	-	-	V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250uA$	1.00	1.50	2.50	V
Drain-Source On-State Resistance	D	V _{GS} =10.0V, I _D =95.0A	-	-	1.1	mΩ
	R _{DS(on)}	V _{GS} =4.5V, I _D =20.0A	-	-	1.5	mΩ
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =40V, V _{GS} =0V	-	-	1.0	uA
GateSource Leakage Current	I _{GSS}	V_{GS} =±20V, V_{DS} =0V	-	-	±100	nA

Dynamic ²⁾						
Total Gate Charge	Qg	V _{DS} =20V, V _{GS} =10V, I _D =1.0A	-	352	-	nC
Total Gate Charge	Qg		-	171	-	nC
Gate-Source Charge	Q_{gs}	V_{DS} =20V, V_{GS} =4.5V, I_{D} =1.0A	-	38	-	nC
Gate-Drain Charge	Q_{gd}		-	66	-	nC
Gate resistance	R _G		-	0.82	-	Ω
Input Capacitance	C _{iss}	\/ _20\/ \/ _0\/ f _200KH -	-	21865	-	pF
Output Capacitance	C _{oss}	V_{DS} =20V, V_{GS} =0V, f=200KHz	-	1190	-	pF
Reverse Transfer Capacitance	C _{rss}		-	1155	-	pF

Switching						
Turn-On Delay Time	t _{d(on)}		-	53	-	ns
Turn-On Rise Time	t _r	V_{DS} =20V, R_{L} =10.0 Ω ,	-	36	-	ns
Turn-Off Delay Time	t _{d(off)}	V_{GEN} =10V, R_{G} =3.0 Ω	-	357	-	ns
Turn-Off Fall Time	t _f		-	100	-	ns

Drain-Source Diode						
Body-Diode Continuous Current	Is	-	-	-	160	A
Diode Forward Voltage 1)	V_{SD}	I _{SD} =50A, V _{GS} =0V	-	-	1.3	V

Note:


1. Pulse width<300us, Duty cycle<2%.

2. Guaranteed by design, not subject to production testing.

Package Outline Dimensions (inches and millimeters)

TOLL						
	Dimensions					
SYMBOL	Millim	neters	Inc	hes		
	Min	Max	Min	Max		
Α	2.20	2.40	0.087	0.094		
b	0.70	0.90	0.028	0.035		
b1	9.70	9.90	0.382	0.390		
b2	0.36	0.55	0.014	0.022		
b3	0.05	0.35	0.002	0.014		
b4	0.30	0.50	0.012	0.020		
b5	1.10	1.30	0.043	0.051		
b6	3.00	3.20	0.118	0.126		
С	0.40	0.60	0.016	0.024		
D	10.28	10.55	0.405	0.415		
D1	10.98	11.18	0.432	0.440		
D2	3.20	3.40	0.126	0.134		
D3	7.00	7.30	0.276	0.287		
D4	3.44	3.74	0.135	0.147		
е	1.10	1.30	0.043	0.051		
E	9.80	10.00	0.386	0.394		
E1	8.20	8.40	0.323	0.331		
E2	8.35	8.65	0.329	0.341		
Н	11.50	11.85	0.453	0.467		
K	4.08	4.28	0.161	0.169		
K1	2.45	-	0.096	-		
L	1.60	2.10	0.063	0.083		
L1	0.50	0.90	0.020	0.035		
L2	0.50	0.70	0.020	0.028		
L3	1.00	1.30	0.039	0.051		
L4	0.13	0.33	0.005	0.013		
Р	2.85	3.15	0.112	0.124		
θ		10°	REF.			
aaa	0.2		0.008			
CCC	0.2	20	0.0	800		
ddd	0.2	25	0.0	10		
666	0.2	20	0.0	08		

Marking Information

First line = Company name

MSN01140A = Product number

XXXXXXX = Tracking number

Fourth line = Gate pin point

Motive reserves the right to make changes without further notice to any products herein. Motive makes no warranty `representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motive assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Motive data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motive does not convey any license under its patent rights nor the rights of others. Motive products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motive product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motive products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motive and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims `costs `damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motive was negligent regarding the design or manufacture of the part.